ICEBreaker Hydrogen HGV offers new engineering approach to zero-emissions technologies
Combined know-how of Viritech, HORIBA MIRA and Intelligent Energy demonstrates new engineering approach to design, integration and operation of hydrogen FCEV drivetrains with HGV debut at Cenex Expo
- ICEBreaker HGV debuts at Cenex Expo
- Project has developed a technology toolset for light and heavy-duty commercial vehicle development aimed at meeting forthcoming Euro Green Deal CO2 targets
- Fuel cell prime mover architecture verified for heavy-duty vehicles powered by two heavy-duty fuel cells configured in parallel
- Project proves critical hydrogen driveline componentry including high current DC-DC converters, bespoke high sampling rate battery management system and optimised battery pack, novel thermal management solutions and high-pressure (700 bar) hydrogen storage system
- Alongside hardware and software development, project has progressed whole vehicle integration, vehicle controllers and thermal management of an FCEV drivetrain
- Digital twin provides operators with a view of total cost of ownership and provides continuous drivetrain optimisation over the vehicle lifecycle
With pressure vessel installation under the truck skirts, ICEBreaker maintains vehicle train length to accord with UK legislation
03 September 2024, Cenex Expo, UK. Project ICEBreaker, delivered by a consortium of leading British engineering companies, today unveiled a fully-configured hydrogen fuel cell HGV truck. It answers many of the key design and development questions faced by the automotive industry as it prepares the next generation of light and heavy-duty commercial vehicles to meet new zero-emissions regulations from the EU that start to take effect in 2030.
The project has brought together the hydrogen engineering expertise of Viritech, HORIBA MIRA and Intelligent Energy, with funding from the Department for Business and Trade (DBT) through the Advanced Propulsion Centre UK’s Advanced Route to Market Demonstrator competition. Jointly they have developed a drivetrain solution that answers the key hydrogen engineering challenges in the creation of a fuel cell electric vehicle truck with the fuel cells as the prime mover, supported by a small 16 kWh battery with 400kW charge/discharge capacity and fuel-cell optimised DC-DC converters. A pair of Intelligent Energy DRIVE HD100 fuel cells operating in parallel deliver 200kW of primary motive power.
Importantly, ICEBreaker’s drivetrain architecture provides a pathway for all categories of goods vehicles from light vans to HGVs to make the transition to zero emissions with solutions that retrofit or integrate with existing vehicle form factors, while also answering key operator requirements such as maintaining payload.
Addressing hydrogen challenges head on
Intelligent Energy’s DRIVE HD100 fuel cells (with 30% smaller heat exchangers achieved by patented direct water injection technology), have provided ICEBreaker with the potential to integrate the entire hydrogen drivetrain within existing HGV form factors, thereby enabling OEMs to avoid significant design costs associated with transitioning to a new fuel vector.
In turn, Viritech’s proprietary DC-DC converter has been specially developed to contend with the high current, low voltage requirements of fuel cells and combines with a small but higher power density battery pack, reclaiming valuable load space. With a 75% smaller battery pack than an equivalent FCEV HGV, not only is payload increased, but mass, cost and mineral use is significantly reduced. Coupled to Viritech’s high-sampling rate proprietary BMS, the battery fill-in cycles operating in conjunction with the prime mover fuel cells results in a highly optimised and efficient system.
ICEBreaker’s driveline is one of the first to be designed and installed as a high pressure 700 bar system and, as a consequence, has comprehensive hydrogen componentry purposely designed to operate at this pressure. In so doing, ICEBreaker delivers superior energy density and increased range.
Integrated, controlled and cooled
The partners have collaborated to harness the novel technologies developed by Intelligent Energy and Viritech to deliver an integrated solution. HORIBA MIRA focused on the vehicle control system, the CAE-simulated and verified thermal management of key components including the battery pack, DC-DC converters, motor and ancillaries and the high and low voltage wiring systems. In addition, ICEBreaker has been designed and realised with a digital twin at the heart of its engineering approach.
Data-driven from drawing board to destination
Icebreaker’s digital twin has delivered two key dividends. With commercial considerations at the heart of goods vehicle operations, HORIBA MIRA has been able to build exacting total cost of ownership forecasts for ICEBreaker in parallel with the prototype design and build, so the engineering is tailored to operators’ commercial considerations. And the digital twin also sits at the heart of a complete lifecycle approach to managing vehicle operations by continuously drawing data from the drivetrain and returning optimised updates to account for changes in component performance, such as battery degradation, over the vehicle’s complete lifetime.
This data-driven calibration optimisation from HORIBA MIRA forms the backbone of a suite of intelligent on- and off-board systems that provide a comprehensive way for fleet operators to minimise total cost of operations and keep fleets commercially viable over the full asset lifetime.
The safety case
The full ICEBreaker vehicle design and build in a truncated 12-month period has enabled the project partners to develop a comprehensive safety engineering approach for both hydrogen fuel cell vehicle design and proof-of-concept build. This has spanned all aspects of the project from technician training to specific hardware designs from hydrogen storage vessel relief valves to tank control units, all of which provides another invaluable link in the hydrogen engineering toolchain.
Comprehensively clean
The ICEBreaker project, embodied in the debut of the HGV launched at Cenex Expo today, provides a complete hydrogen engineering approach from design, build, test, verify and operate FCEV goods vehicles for OEMs and its tiered supply chain. In addition, ICEBreaker not only provides the technical pathway to meet emissions compliance with FCEV commercial vehicles, but has also developed toolsets that respond to the commercial lifetime operations of next-generation clean vehicles for end customers.
Timothy Lyons, Viritech’s CEO said, “ICEBreaker has been an intense but purposeful project for Viritech, HORIBA MIRA and Intelligent Energy. In less than 12 months, our combined experience has enabled us to jointly develop an engineering process to design, plan and integrate the operation of a hydrogen drivetrain for commercial vehicles. This process has developed new hydrogen-specific hardware, control systems and software to enhance vehicle deployment, demanded a safety engineering approach for a new fuel vector and demonstrated its full integration into an existing HGV architecture. We’re confident that this project will deliver important insights that will be of great use to the industry as it embraces hydrogen to tackle forthcoming emissions regulations.”